
Supporting the Model-Driven Development
of Real-time Embedded Systems with
Simulation and Animation via Highly

Customizable Code Generation

Nondini Das, Suchita Ganesan, Leo Jweda,
Mojtaba Bagherzadeh, Reza Ahmadi, Nicolas Hili, Juergen Dingel

{ndas, ganesan, juwaidah, mojtaba, ahmadi, hili,
dingel}@cs.queensu.ca

School of Computing, Queen’s University,
Kingston, Ontario, Canada

Progress Report Meeting, École Polytechnique de Montréal, May 2016



Outline

Introduction and Motivation

The Supporting Infrastructure
Overview
Observability of Models: Towards a Taxonomy of Events
Extending the PapyrusRT Code Generation
Defining the Libraries: The Rover Model

Animating and Interacting with the model

Integrated Debugging

May 2016 2 / 14



Introduction and Motivation

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

ev1

ev2
∆T User’s

Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

foo()

ev3

ev5

bar()

ev4

baz()

A B

From Runtime Model Monitoring. . .

! Timing / Resource Constraint Violation
! Code-driven
! LTTng acts as an observer :

I Listens for specific events
I Does not disrupt the execution flow

o

. . . to a more general vision

� Pluggable components:
I Animation and Interaction
I Debugging

� Consumer / Producer of events

Introduction and Motivation May 2016 3 / 14



Introduction and Motivation

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

ev1

ev2
∆T User’s

Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

foo()

ev3

ev5

bar()

ev4

baz()

A B

From Runtime Model Monitoring. . .

! Timing / Resource Constraint Violation
! Code-driven
! LTTng acts as an observer :

I Listens for specific events
I Does not disrupt the execution flow

o

. . . to a more general vision

� Pluggable components:
I Animation and Interaction
I Debugging

� Consumer / Producer of events

Introduction and Motivation May 2016 3 / 14



Introduction and Motivation

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

ev1

ev2
∆T User’s

Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

foo()

ev3

ev5

bar()

ev4

baz()

A B

From Runtime Model Monitoring. . .

! Timing / Resource Constraint Violation

! Code-driven
! LTTng acts as an observer :

I Listens for specific events
I Does not disrupt the execution flow

o

. . . to a more general vision

� Pluggable components:
I Animation and Interaction
I Debugging

� Consumer / Producer of events

Introduction and Motivation May 2016 3 / 14



Introduction and Motivation

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

ev1

ev2
∆T User’s

Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

foo()

ev3

ev5

bar()

ev4

baz()

A B

From Runtime Model Monitoring. . .

! Timing / Resource Constraint Violation
! Code-driven

! LTTng acts as an observer :
I Listens for specific events
I Does not disrupt the execution flow

o

. . . to a more general vision

� Pluggable components:
I Animation and Interaction
I Debugging

� Consumer / Producer of events

Introduction and Motivation May 2016 3 / 14



Introduction and Motivation

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

ev1

ev2
∆T

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

foo()

ev3

ev5

bar()

ev4

baz()

A B

From Runtime Model Monitoring. . .

! Timing / Resource Constraint Violation
! Code-driven
! LTTng acts as an observer :

I Listens for specific events
I Does not disrupt the execution flow

o

. . . to a more general vision

� Pluggable components:
I Animation and Interaction
I Debugging

� Consumer / Producer of events

Introduction and Motivation May 2016 3 / 14



Introduction and Motivation

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

ev1

ev2
∆T

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

foo()

ev3

ev5

bar()

ev4

baz()

A B

From Runtime Model Monitoring. . .

! Timing / Resource Constraint Violation
! Code-driven
! LTTng acts as an observer :

I Listens for specific events
I Does not disrupt the execution flow

o

. . . to a more general vision

� Pluggable components:
I Animation and Interaction
I Debugging

� Consumer / Producer of events

Introduction and Motivation May 2016 3 / 14



Introduction and Motivation

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

ev1

ev2
∆T User’s

Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

foo()

ev3

ev5

bar()

ev4

baz()

A B

From Runtime Model Monitoring. . .

! Timing / Resource Constraint Violation
! Code-driven
! LTTng acts as an observer :

I Listens for specific events
I Does not disrupt the execution flow

o

. . . to a more general vision

� Pluggable components:
I Animation and Interaction
I Debugging

� Consumer / Producer of events

Introduction and Motivation May 2016 3 / 14



Introduction and Motivation

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

ev1

ev2
∆T User’s

Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

foo()

ev3

ev5

bar()

ev4

baz()
A B

From Runtime Model Monitoring. . .

! Timing / Resource Constraint Violation
! Code-driven
! LTTng acts as an observer :

I Listens for specific events
I Does not disrupt the execution flow

o

. . . to a more general vision

� Pluggable components:
I Animation and Interaction
I Debugging

� Consumer / Producer of events

Introduction and Motivation May 2016 3 / 14



Infrastructure Overview

Design

Code Generation

Execution

+ Context
configuration

Quality Assurance Communication

Integrated
Debugging

Monitoring &
Simulation

Animation &
Interaction

. . . to support model-driven design

I Allows for continous development
I Driven by the code generation
I Highly Configurable

n

. . . For two purposes. . .

n

Three activities. . .

The Supporting Infrastructure Overview May 2016 4 / 14



Infrastructure Overview

Design

Code Generation

Execution

+ Context
configuration

Quality Assurance Communication

Integrated
Debugging

Monitoring &
Simulation

Animation &
Interaction

. . . to support model-driven design

I Allows for continous development
I Driven by the code generation
I Highly Configurable

n

. . . For two purposes. . .

n

Three activities. . .

The Supporting Infrastructure Overview May 2016 4 / 14



Infrastructure Overview

Design

Code Generation

Execution

+ Context
configuration

Quality Assurance Communication

Integrated
Debugging

Monitoring &
Simulation

Animation &
Interaction

« purpose » « purpose »

« refines »« refines »

. . . to support model-driven design

I Allows for continous development
I Driven by the code generation
I Highly Configurable

n

. . . For two purposes. . .

n

Three activities. . .

The Supporting Infrastructure Overview May 2016 4 / 14



Open Source tool Support

Design

Code Generation

Execution
+ Context
configuration

Quality Assurance Communication

Integrated
debugging

+

Monitoring &
Simulation

+

Animation &
Interaction

+

The Supporting Infrastructure Overview May 2016 5 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure Overview May 2016 6 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure Overview May 2016 6 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure Overview May 2016 6 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure Overview May 2016 6 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure Overview May 2016 6 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure Overview May 2016 6 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure Overview May 2016 6 / 14



Configuring the infrastructure

Event

CommunicationE AttributeE CapsuleE StateMachineE

MessageE QueueE

InitializedE ChangedE

SentE DeliveredE HandledE DroppedE

CreatedE DestroyedE BoundE

StateE TransitionE

ActiveE TriggeredE

The Supporting Infrastructure
Observability of Models: Towards a

Taxonomy of Events May 2016 7 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure
Observability of Models: Towards a

Taxonomy of Events May 2016 8 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure
Observability of Models: Towards a

Taxonomy of Events May 2016 8 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 10 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 10 / 14



Definition of the Rover Library

Hardware

File System

GPIO Class

Rover Library

Control Software

I Contains the Business Logic
I Does not know about the hardware configuration
I Interacts with the Rover Library

I Makes the glue with the Hardware
I Defines the protocols the Business Logic will have

to interact with
I Specific to a design configuration

The Supporting Infrastructure Defining the Libraries: The Rover Model May 2016 11 / 14



Definition of the Rover Library

Hardware

File System

GPIO Class

Rover Library

Control Software

I Contains the Business Logic
I Does not know about the hardware configuration
I Interacts with the Rover Library

I Makes the glue with the Hardware
I Defines the protocols the Business Logic will have

to interact with
I Specific to a design configuration

The Supporting Infrastructure Defining the Libraries: The Rover Model May 2016 11 / 14



Definition of the Rover Library

Hardware

File System

GPIO Class

Rover Library

Control Software

I Contains the Business Logic
I Does not know about the hardware configuration
I Interacts with the Rover Library

I Makes the glue with the Hardware
I Defines the protocols the Business Logic will have

to interact with
I Specific to a design configuration

The Supporting Infrastructure Defining the Libraries: The Rover Model May 2016 11 / 14



Definition of the Rover Library

The Supporting Infrastructure Defining the Libraries: The Rover Model May 2016 12 / 14



Animating the Model

Web based animation & State Machine
Live Monitoring

! Animation of the Rover Model
! Code-driven (different from Moka)
! Works as an observer:

I Bi-directional socket
communication with the C++
code

I Listen all events (state changes,
transitions fired)

I Would at last interact with the
code execution flow (not
supported yet)

Animating and Interacting with the model May 2016 13 / 14



Animating the Model

Web based animation & State Machine
Live Monitoring

! Animation of the Rover Model

! Code-driven (different from Moka)
! Works as an observer:

I Bi-directional socket
communication with the C++
code

I Listen all events (state changes,
transitions fired)

I Would at last interact with the
code execution flow (not
supported yet)

Animating and Interacting with the model May 2016 13 / 14



Animating the Model

Web based animation & State Machine
Live Monitoring

! Animation of the Rover Model
! Code-driven (different from Moka)

! Works as an observer:
I Bi-directional socket

communication with the C++
code

I Listen all events (state changes,
transitions fired)

I Would at last interact with the
code execution flow (not
supported yet)

Animating and Interacting with the model May 2016 13 / 14



Animating the Model

Web based animation & State Machine
Live Monitoring

! Animation of the Rover Model
! Code-driven (different from Moka)
! Works as an observer:

I Bi-directional socket
communication with the C++
code

I Listen all events (state changes,
transitions fired)

I Would at last interact with the
code execution flow (not
supported yet)

Animating and Interacting with the model May 2016 13 / 14



What’s Next ?

Vision

� Improve the different parts of the infrastructure,
especially the code generator to allow for several
configurations to be used at the same time ;

� Define different libraries for different models ;

� Some bugs have to be corrected in Papyrus /
PapyrusRT (e.g. Internal transition with effects,
graphical glitches since the new Eclipse version,
etc.).

Animation & Interaction

� Allow the user to interact with the model using
the animation view ;

� Implement other animation engines (2D/3D,
Unity, etc.) ;

� Propose a creation tool to automatically create
animation views to animate and interact with the
model ;

� Look at Moka to see if it can be used to simulate
the state machine execution ;

Animating and Interacting with the model May 2016 14 / 14



Thank You !

Questions ?


	Introduction and Motivation
	The Supporting Infrastructure
	Overview
	Observability of Models: Towards a Taxonomy of Events
	Extending the PapyrusRT Code Generation
	Defining the Libraries: The Rover Model

	Animating and Interacting with the model
	Integrated Debugging

