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Introduction and Motivation
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From Runtime Model Monitoring. . .

! Timing / Resource Constraint Violation
! Code-driven
! LTTng acts as an observer :

I Listens for specific events
I Does not disrupt the execution flow

o

. . . to a more general vision

� Pluggable components:
I Animation and Interaction
I Debugging

� Consumer / Producer of events
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Infrastructure Overview

Design

Code Generation

Execution

+ Context
configuration

Quality Assurance Communication

Integrated
Debugging

Monitoring &
Simulation

Animation &
Interaction

. . . to support model-driven design

I Allows for continous development
I Driven by the code generation
I Highly Configurable

n

. . . For two purposes. . .

n

Three activities. . .
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Open Source tool Support
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Infrastructure’s Challenges
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Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.
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Configuring the infrastructure

Event
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The Supporting Infrastructure
Observability of Models: Towards a

Taxonomy of Events May 2016 7 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure
Observability of Models: Towards a

Taxonomy of Events May 2016 8 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure
Observability of Models: Towards a

Taxonomy of Events May 2016 8 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Extending the PapyrusRT Code Generator

PapyrusRT
Codegen

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

Papyrus Model

Context
Code Generator

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »

« defines »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 10 / 14



Infrastructure’s Challenges

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4

baz()
A B

Challenges to address

� Each pluggable component is an
observer that consumes / produces
specific events ;

� Each component has to interact
with the generated code ;

� The generated code has to interact
with the hardware platform.

w

How we addressed them

! Definition of a Context Con-
figuration Model that lists all
monitorable events ;

! Extension of the PapyrusRT
code generator ;

! Definition of a Rover Library
to interact with the hardware.

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 10 / 14



Definition of the Rover Library
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I Contains the Business Logic
I Does not know about the hardware configuration
I Interacts with the Rover Library

I Makes the glue with the Hardware
I Defines the protocols the Business Logic will have

to interact with
I Specific to a design configuration
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Definition of the Rover Library
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Animating the Model

Web based animation & State Machine
Live Monitoring

! Animation of the Rover Model
! Code-driven (different from Moka)
! Works as an observer:

I Bi-directional socket
communication with the C++
code

I Listen all events (state changes,
transitions fired)

I Would at last interact with the
code execution flow (not
supported yet)
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What’s Next ?

Vision

� Improve the different parts of the infrastructure,
especially the code generator to allow for several
configurations to be used at the same time ;

� Define different libraries for different models ;

� Some bugs have to be corrected in Papyrus /
PapyrusRT (e.g. Internal transition with effects,
graphical glitches since the new Eclipse version,
etc.).

Animation & Interaction

� Allow the user to interact with the model using
the animation view ;

� Implement other animation engines (2D/3D,
Unity, etc.) ;

� Propose a creation tool to automatically create
animation views to animate and interact with the
model ;

� Look at Moka to see if it can be used to simulate
the state machine execution ;

Animating and Interacting with the model May 2016 14 / 14



Thank You !

Questions ?
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